Monday, October 31, 2016

aerospace-page3

16. What are the mechanical properties required to know before performing maintenance?

Ans:
The mechanical properties provide the definition of the behaviour of the material that is being put under the action of external forces. This is an important aspect to aeronautical engineering that is also used to gain knowledge for applications developed for aircrafts. This provides an overall view of the structure of the aircraft and the maintenance aspect of it. The properties used are as follows:
• Strength
• Stiffness,
• Specific strength and stiffness,
• Ductility,
• Toughness,
• Malleability and elasticity

17. Why is torsion such an important feature in aircraft engines?

Ans:
Torsion is used to drive shafts for aircraft engine driven pumps and motors. They are also involved in having a force behind propeller shafts, pulley assemblies and rive couplings for machinery. The shear stress is setup within the shafts and it results from the torsional loads. The size and the nature of torsional loads and stresses need to be known while making the design or else premature failure can occur. The shafts are used as a component to transmit torsional loads and twisting moments or torque. They can be a cross section or a circular component as it is more suitable to transmit the torque for pumps and motors to supply the power to the aircraft system.

18. Why is the study of gyroscopes motion required to learn aircraft applications?

Ans:
Gyroscopic motion is considered as an important study for aircraft application for the inertia and momentum of the body that is used in circular motion. The momentum is the product of the mass of a body and its velocity. This is a measure of the quantity of motion of a body. Inertia is the force that doesn’t allow any change to happen in momentum. Gyroscope is the rotating mass that can be moved freely at right angles to its plane of rotation. This utilizes the gyro rotor or gyroscopic inertia to provide the motion unless it is compelled by an external force to change the state. This uses property of rigidity as gyroscope acts as a reference point in space.

19. What are the laws of gyro-dynamics?

Ans:
Gyro-dynamics deals with gyroscopic motion that is used for creating aircraft application as it allows inertia and momentum of the body. These laws consist of the two properties of rigidity and precession to provide the visible effects gyro-dynamics. These are as follows:
• If a rotating body is mounted and it is free to move about any axis that passes through the center of mass, then the spin axis that is used will remain fixed in inertial space without displacing any of the frame.
• If a constant torque is applied to any direction such as about an axis, or perpendicular to the axis, then the spin axis will move about an axis that is mutually perpendicular to both the spin and the torque axis.

20. What are the steps required to solve the problems of aircraft flying high and at very large speed?

Ans:
There are various steps required to solve the problems of aircraft flying high and at very large speed are as follows:
• Build stiff wings that allow and provide the resistance to torsional diversion beyond the maximum speed of the aircraft.
• Use two sets of ailerons and one outboard pair that can be operated at low speeds.
• Use of one inboard pair that can be used to operate on high speeds, this will have less twisting impact when the ailerons are positioned outboard.
• Use spoilers that can be positioned independently or can be paired with ailerons. These reduce the lift on the down going wing by interrupting the airflow over the top surface.



21.Why refrigeration is done inside aircraft, and why aircraft body is made of aluminium?

Ans:
This is the combined effect low pressure & speed of plane in sky. Body of aircraft is made up of aluminium due to its good tensile strength & good conductor.          

22. What is yawing motion?

Ans:
Yawing motion means the side ways motion aircraft about the lateral axis. In other words side to side motion of aircraft.

23. Does the knowledge of mathematics of Science is required to get into aerospace engineering?

Ans:
The basic understanding of Math is important, as it is not used at all the time during the course of aerospace engineering. One should have a basic understanding of mathematical definitions and knowledge on computers is very important as the computer programs will help in doing simple calculations and verify the results are reasonable. However, on the science front it is very important to have a very good understanding on various subjects like dynamics and mechanics in physics, strong emphasis on chemistry, electromagnetism.

24. What is SPICE? Where was it developed?

Ans:
The full form of SPICE is Simulation program with integrated circuit emphasis. This is the widely used analog simulator, which was developed at electronics research lab of California University.

25. Describe stress analysis in Aerospace engineering?

Ans:
People working on these areas as a aerospace engineers should have familiarity and exposure to NASTRAN and MATLAB with knowledge on space environment and modelling of flexible dynamics. These aerospace engineers will be responsible to conduct stress analysis on metallic and composite structures. NASTRAN, IDEAD, Oracle and PATRAN proficiency level is required. Their duties also include on aircraft which are metallic and composite structures. This includes and understanding of control surface stiffness and loop calculations, finite element modelling (FEM), fatigue testing requirement and analysis.



<Back


EmoticonEmoticon